42 research outputs found

    Zien of raden?

    Get PDF
    Rede, uitgesproken bij de aanvaarding van het ambt van bijzonder hoogleraar kinderpulmonologie, in het bijzonder de ontwikkeling van de long, aan het Erasmus MC, Faculteit van de Erasmus Universiteit Rotterdam op 12 februari 201

    Annual lung function changes in young patients with chronic lung disease

    Get PDF
    Reference equations for ventilatory function that use different statistical models may introduce artifacts that affect the estimated change of lung function during growth in young subjects. The effect of differently modelled reference equations on the estimated annual change of forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) in young patients with chronic lung disease was assessed. Four frequently used reference equations were used to describe the longitudinal changes of FEV1 and FVC in 52 patients (23 females) with cystic fibrosis (CF) during a mean follow-up of 3.9 yrs. Choice of reference equations directly affected value and, most importantly, estimated annual change of FVC and FEV1. Mean+/-SD annual change of FEV1 varied from 2.2+/-6.2 to -2.2+/-3.6% of predicted. For two reference equations the estimated individual changes of FEV1 and FVC in CF were positively correlated wit

    Extra-fine particles improve lung delivery of inhaled steroids in infants: a study in an upper airway model

    Get PDF
    BACKGROUND: The particles of a new hydrofluoroalkane-134a (HFA)-beclomethasone dipropionate (BDP) metered-dose inhaler (Qvar; 3M Pharmaceuticals; St. Paul, MN) are considerably smaller than those of chlorofluorocarbon (CFC)-BDP. This may improve lung deposition in infants who inhale nasally and have irregular breathing patterns and small airways. Aim: To compare the dose delivered to the lungs of HFA-BDP and CFC-BDP at different breathing patterns using an upper airway model of an infant. METHODS: An anatomically correct upper airway model of a 9-month-old child with an open nasal airway was connected to an impactor and breathing simulator. HFA-BDP, 100 microg, and CFC-BDP, 100 micro g, were delivered to the model through a detergent-coated, small-volume spacer. The total dose leaving the model (lung dose), its particle size distribution, and median mass aerodynamic diameter (MMAD) were assessed during simulated tidal breathing with tidal volumes (VTs) of 50 mL, 100 mL, and 200 mL, and 30 breaths/min. Dose was expressed as percentage of nominal dose. RESULTS: Lung doses for HFA-BDP were 25.4%, 26.5%, and 30.7% compared with 6.8%, 4.8%, and 2.1% for CFC-BDP at VTs of 50 mL, 100 mL, and 200 mL, respectively. The dose of particles < 2.1 microm to the lung for HFA-BDP was 23 to 28% compared with 0.6 to 0.8% for CFC-BDP. The lung dose of CFC-BDP mainly consisted of particles between 2.1 microm and 4.7 microm. MMAD for HFA-BDP was 1.2 microm, and 2.6 to 3.3 microm for CFC-BDP depending on VT. The lung dose for CFC-BDP decreased significantly with increasing VT. HFA-BDP lung dose did not alter significantly with VT. CONCLUSIONS: In this infant model study, the use of HFA-BDP with a high dose of particles < 2.1 microm improves the dose delivered to the lungs substantially. Furthermore, the large proportion of extra-fine particles in HFA-BDP results in lung doses less dependent on breathing pattern compared with CFC-BDP

    Variability of aerosol delivery via spacer devices in young asthmatic children in daily life

    Get PDF
    Pressurized metered dose inhalers (pMDI) are widely used together with spacers for the treatment of asthma in children. However, the variability of daily medication dose for pMDI/spacer combinations is not known. Electrostatic charge is a potential source of dose variability. Metal spacers have no static charge. This study assessed and compared within-subject variability of aerosol delivery of metal and plastic spacers. This was a randomized, crossover study in children with stable asthma aged 1-4 (group I, n=17) and 5-8 (group II, n=16) yrs. In both groups the amount of drug delivered to the mouth by a metal spacer (Nebuchamber) and one of two plastic (polycarbonate) spacers, i.e. Babyhaler in group I and Volumatic in group II was measured. The metal and plastic spacers were tested at home in a randomized order for 7 days each, using budesonide (200 microg b.i.d.). Aerosol was collected on a filter positioned between spacer and facemask or mouth. Budesonide on the filter was assessed by high performance liquid chromatography. The mean filter dose for each child (mean+/-SD) during the 7 days was expressed as a percentage of the nominal dose. Within-subject variability was expressed as coefficient of variation (CV). Mean filter dose in group I was 41.7+/-10.1% for Nebuchamber and 26.0+/-4.0% for Babyhaler (p<0.001). Mean filter dose in group II was 50.2+/-9.2% for Nebuchamber and 19.4+/-7.2% for Volumatic (p<0.001). Mean CV in group I was 34% for Nebuchamber and 37% for Babyhaler (p=0.44). Mean CV in group II was 23% for Nebuchamber and 34% for Volumatic (p=0.003). There was substantial within-subject dose variability in aerosol delivery in children using a pMDI/spacer at home. This variability was lower for the metal than for the plastic spacer in children 5-8 yrs of age. The dose delivered to the mouth was about two-fold higher fo

    The development of bronchiectasis on chest computed tomography in children with cystic fibrosis: can pre-stages be identified?

    Get PDF
    Objective: Bronchiectasis is an important component of cystic fibrosis (CF) lung disease but little is known about its development. We aimed to study the development of bronchiectasis and identify determinants for rapid progression of bronchiectasis on chest CT. Methods: Forty-three patients with CF with at least four consecutive biennial volumetric CTs were included. Areas with bronchiectasis on the most recent CT were marked as regions of interest (ROIs). These ROIs were generated on all preceding CTs using deformable image registration. Observers indicated whether: bronchiectasis, mucus plugging, airway wall thickening, atelectasis/consolidation or normal airways were present in the ROIs. Results: We identified 362 ROIs on the most recent CT. In 187 (51.7 %) ROIs bronchiectasis was present on all preceding CTs, while 175 ROIs showed development of bronchiectasis. In 139/175 (79.4 %) no pre-stages of bronchiectasis were identified. In 36/175 (20.6 %) bronchiectatic airways the following pre-stages were identified: mucus plugging (17.7 %), airway wall thickening (1.7 %) or atelectasis/consolidation (1.1 %). Pancreatic insufficiency was more prevalent in the rapid progressors compared to the slow progressors (p = 0.05). Conclusion: Most bronchiectatic airways developed within 2 years without visible pre-stages, underlining the treacherous nature of CF lung disease. Mucus plugging was the most frequent pre-stage. Key Points: • Development of bronchiectasis in cystic fibrosis lung disease on CT.• Most bronchiectatic airways developed within 2 years without pre-stages.• The most frequently identified pre-stage was mucus plugging.• This study underlines the treacherous nature of CF lung disease

    Physiological and morphological determinants of maximal expiratory flow in chronic obstructive lung disease

    Get PDF
    Maximal expiratory flow in chronic obstructive pulmonary disease (COPD) could be reduced by three different mechanisms; loss of lung elastic recoil, decreased airway conductance upstream of flow-limiting segments; and increased collapsibility of airways. We hypothesized that decreased upstream conductance would be related to inflammation and thickening of the airway walls, increased collapsibility would be related to decreased airway cartilage volume, and decreased collapsibility to inflammation and thickening of the airway walls. Lung tissue was obtained from 72 patients with different degrees of COPD, who were operated upon for a solitary peripheral lung lesion. Maximal flow-static recoil (MFSR) plots to estimate upstream resistance and airway collapsibility were derived in 59 patients from preoperatively measured maximal expiratory flow-volume and pressure-volume curves. In 341 transversely cut airway sections, airway size, airway wall dimensions and inflammatory changes were measured. Airflow obstruction correlated with lung elastic recoil and the MFSR estimate of airway conductance but not to airway collapsibility or to the amount of airway cartilage. The upstream conductance decreased as the inner wall became thicker. Airway collapsibility did not correlate with the amount of airway cartilage, inflammation, or airway wall thickness. We conclude that the maximal flow-static recoil model does not adequately reflect the collapsibility of the flow-limiting segment

    Structure and function of small airways in asthma patients revisited

    Get PDF
    Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma

    Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis

    Get PDF
    For effective clinical management of cystic fibrosis (CF) lung disease it is important to closely monitor the start and progression of lung damage. The aim of this study was to investigate the ability of high-resolution computed tomography (HRCT) scoring systems and pulmonary function tests (PFT) to detect changes in lung disease. CF children (n=48) had two H

    The radiological diagnosis of bronchiectasis: What’s in a name?

    Get PDF
    Diagnosis of bronchiectasis is usually made using chest computed tomography (CT) scan, the current gold standard method. A bronchiectatic airway can show abnormal widening and thickening of its airway wall. In addition, it can show an irregular wall and lack of tapering, and/or can be visible in the periphery of the lung. Its diagnosis is still largely expert based. More recently, it has become clear that airway dimensions on CT and therefore the diagnosis of bronchiectasis are highly dependent on lung volume. Hence, control of lung volume is required during CT acquisition to standardise the evaluation of airways. Automated image analysis systems are in development for the objective analysis of airway dimensions and for the diagnosis of bronchiectasis. To use these systems, clear and objective definitions for the diagnosis of bronchiectasis are needed. Furthermore, the use of these systems requires standardisation of CT protocols and of lung volume during chest CT acquisition. In addition, sex-and age-specific reference values are needed for image analysis outcome parameters. This review focusses on today’s issues relating to the radiological diagnosis of bronchiectasis using state-of-the-art CT imaging techniques
    corecore